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The Casimir Problem of Spherical Dielectrics:
A Solution in Terms of Quantum Statistical
Mechanics
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The Casimir energy for a compact dielectric sphere is considered in a novel way,
using the quantum statistical method introduced by Ho% ye and Stell and others.
Dilute media are assumed. It turns out that this method is a very powerful one:
we are actually able to derive an expression for the Casimir energy that contains
also the negative part resulting from the attractive van der Waals forces between
the molecules. It is precisely this part of the Casimir energy that has turned out
to be so difficult to extract from the formalism when using the conventional
field-theoretic methods for a continuous medium. Assuming a frequency cutoff,
our results are in agreement with those recently obtained by G. Barton.

KEY WORDS: Casimir energy; van der Waals forces; quantum statistical
mechanics; polarizable fluids; radiating dipole interaction.

1. INTRODUCTION

It is a pleasure to contribute this article to a festschrift volume for
Professor Stell. The article is one in a series of articles published by the
present authors on the Casimir effect and related topics, using methods of
statistical mechanics for quantized systems at thermal equilibrium. Besides
contributions from others, these methods were developed by one of the
authors (JSH) in cooperation with Professor Stell in their extensive studies
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of polar and polarizable fluids through several years. This long-lasting
cooperation, which was initiated in 1972, is still active today.

The Casimir energy problem for a compact spherical ball is a many-
facetted problem; the formal solution of it is to an unusual degree
dependent on the mathematical method of approach chosen. The Casimir
effect as such is now a well-known effect in physics.(1) It is ordinarily
examined with the use of field theory in dielectric media, allowing the
medium to possess a refractive index n (even dispersive effects can in
principle be dealt with in this way, if n is assumed to depend on the fre-
quency). The standard configuration does not involve curved boundaries at
all, but consists instead of two plane plates separated by a small gap. In
this geometrical configuration the phenomenological electromagnetic
theory, as constructed mainly by Lifshitz(2) is fully adequate, and leads to
a prediction for the Casimir force between the plates that has recently been
verified experimentally to an impressive accuracy of about one per cent.(3, 4)

If we now leave the parallel-plate configuration and consider instead
a single dielectric ball, the situation becomes much less clear-cut. The
history along this direction of research may be taken to start with the
calculation of Boyer on a singular perfectly conducting shell:(5) he found
the Casimir energy E to be positive, corresponding to an outward directed
surface force. Later, the dielectric ball was considered by Milton, (6�8)

Milton and Ng, (9, 10) Brevik et al.(11�14) and several others. Some consensus
seems by now to have been reached as regards the Casimir energy E as
found by field theoretical methods: this energy is positive, corresponding to
a repulsive force, and is given by

E=
23

384
�c
?a

(n&1)2 (1)

for a dilute sphere whose radius is a.
Faced with this field theoretical result one becomes however surprised,

for the following physical reason: the Casimir energy should be the
cooperative result of the van der Waals forces between the molecules in the
ball. The van der Waals forces are necessarily attractive. How can these
forces sum up to give a replusive total surface force? The natural answer to
this question is that the field theoretical calculation, based as it is on a
continuum model for the dielectric, is unable to cope with the attractive
part. In other words, the attractive terms are necessarily lost in the
regularization process. An important progress was recently made by
Barton;(15) he made use of quantum mechanical perturbation theory to
second order, imposed an exponential cutoff in wave numbers, and
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arrived at a definite expression for the Casimir energy containing also the
cutoff dependent, attractive (and actually also repulsive) terms. Moreover,
a cutoff independent, repulsive term was contained in the energy expres-
sion, which was in precise agreement with Eq. (1) above. There are actually
some indications of the same kind already in the paper of Milton and
Ng:(10) they derived the cutoff independent Casimir energy starting from
the van der Waals forces, omitting the divergent terms.

And this brings us to the central theme of the present paper, namely
to rederive the expression for the Casimir energy using the perhaps some-
what more unconventional quantum statistical methods that were
developed by Ho% ye and Stell, and others. Central references for the present
work are refs. 16 and 17. Others that also include evaluation of frequency
spectra are ref. 18. As we will see, this method is very powerful, and we will
be able to establish contact with the results of Barton. The line of develop-
ment of the application of this method to the Casimir problem is the
following: Some years ago Brevik and Ho% ye(19) showed that the Casimir
energy between two point particles is the same as the free energy due to
two quantized fluctuating dipole moments interacting via the dipolar
radiation interaction (zero frequency limit corresponds to the static dipole-
dipole interaction). Later, Ho% ye and Brevik(20) extended this method to
evaluate the Casimir force between a pair of parallel dielectric plates
separated by a small gap. Performing this more complex calculation with
the use of statistical mechanics for systems in thermal equilibrium, we were
able to rederive the known results.

Below we will evaluate the free energy in a dielectric dilute medium,
again using the same methods of statistical mechanics. Based on this we
will make contact with the results of Barton, as mentioned, as well as with
the results obtained in field theory. On the basis of our method the physical
origin of the divergences is easily understood. The problem, as anticipated
above, has its origin in a continuum description of dielectric media, while
a realistic system has to have a microscopic structure involving a minimum
separation between molecules due to repulsive cores.

2. BASIC FORMALISM

We begin by recapitulating some of the basic formulas from our earlier
work.(19) For a pair of polarizable particles the free energy F due to their
mutual interaction is

&;F= 3
2 :

K

:2
K(2�2

DK(r)+�2
2K(r)) (2)
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cf. Eq. (5.14) in ref. 19. Here :K is the frequency dependent polarizability,
and

K=2?n�; (3)

is the Matsubara frequency related to the frequency | via

K=&i�| (4)

Further, n is an integer, ;=1�kBT is the inverse temperature, and �DK and
�2K are the two radial parts of the radiating dipole-dipole interaction as
given by Eqs. (5.9) and (5.10) in ref. 19. Performing the sum in (2) for
; � � (i.e., T � 0), we obtain Eq. (5.16) in ref. 19

F=&
23�c:2

4?r7 (5)

which is the known result for the Casimir effect.
For a low density medium the total free energy 2 can now be obtained

by summing or integrating (2) over pairs of particles in a volume V such
that

2= 1
2 \2 | dr1 dr2 F (6)

where \ is the number density and r=r1&r2 . At T=0, (5) is to be
inserted. Clearly, the integral will diverge, due to the behaviour for small
values of r. However by integrating over a small sphere a finite term, which
is positive, can be separated out; cf. ref. 10 and 13. This finite term turns
out to coincide with the field theoretical result. We will show below that
the divergences found using other kinds of approach are connected with
this small r behaviour. Equation (2), together with (6), will be shown to
lead to results in agreement with those obtained from quantum mechanical
perturbation theory to second order [15]. The exponential cutoff used by
Barton in Fourier space can be introduced also in our approach; it
corresponds to a small ``soft'' r cut out from the otherwise continuous
medium, and will be a rough approximation to real systems. As mentioned
above, real systems are not continuous but consist of molecules that have
a minimum separation due to hard cores.

3. CALCULATION OF THE FREE ENERGY

Let us now calculate the free energy 2, as given by (6). In order to
establish connection with perturbation theory, we first represent (2) in
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terms of Fourier quantities for which, as we will see, a wave vector cutoff
can be introduced easily. The radiating dipole-dipole interaction used in (2)
can be written as

�(12)=�DK(r) DK(12)+�2K(r) 2K(12) (7)

with

DK(12)=3( r̂â1K)(r̂â2K)&â1K â2K

2K(12)=â1K â2K

Here the hats denote unit vectors, and aiK is the Fourier transform of the
fluctuating dipole moment of particle number i in imaginary time;
cf. Eq. (5.2) in ref. 19. Equation (7) can be Fourier transformed to give

�� (12)=�� 2K(k) D� K(12)+�� 2K(k) 2K(12) (8)

with

D� K(12)=3(k� â1K)(k� â2K)&â1K â2K

�(12)=
1

(2?)3 | �� (12) eikr dk

With this Eq. (2) can be rewritten as

&;F=
3
2

1
(2?)6 :

K
| MK ei(k+k$) r dk dk$ (9)

where

MK=�� 2K(k) �� 2K(k$)(3k� k� $&1)+�� 2K(k) �� 2K(k$) (10)

Like expression (2), this is obtained after orientational averaging of the
products of terms containing D� K(12) and 2K(12) with respect to âiK .

To get further the explicit Fourier transformed interaction terms are
needed. These follow from the solution of Maxwell's equations, and like the
corresponding terms in (2) (Eq. (5.10) in ref. 19) they were used by Ho% ye
and Stell when dealing with the refractive index of fluids.(17) Thus from
Eq. (7) in ref. 17 we have3

�� DK(k)=&
4?
3

k2

k2&|2 , �� 2K(k)=
4?
3 \ 2k2

k2&|2&(2+3)+ (11)
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with K=&i�c|. (For simplicity | is replaced by c| where c is the light
velocity.) Here the parameter 3 introduced by Ho% ye and Stell(21) is used.
A purpose to introduce it was by #-parametrization of the dipole-dipole
interaction to obtain a continuous family of mean field theories (# � 0) of
polar fluids. Here # is the inverse range of �2K(r), and for �DK(r) it is the
inverse range inside which the dipolar 1�r3 behaviour is cut or rounded off.
As seen from (11) the 3 is thus the integrated amplitude of the �2K -term
(|=0). This parameter was also used in ref. 17, part IV, and its Eq. (57)
for the direct correlation function corresponds to Eq. (11) here. With its
Eqs. (56) and (59) the dielectric constant = can then in general be expressed
as (for small |�# � 0)

=&1
(1&3) =+(2+3)

=
4?
3

\: (12)

where \ is the number density of particles. (Here a possible density
dependence of : � :eff which is proportional to the fluctuating dipole
moment squared, is disregarded.)

The separate term (2+3) at the end of Eq. (11) will necessarily yield
infinity when inserted in (9) and summed. In r-space it gives a $-function
at r=0. As pairs of particles in reality are separated, we can simply remove
this term here. This amounts to putting 2+3=0, by which

#=
=&1

=
=4?\: (13)

(The quantity # in Eq. (13) is not the # used in the #-parametrization.)
Note here that this choice is consistent with the continuum approach
(# � �), where only a transverse radiating field is implicitly considered.
That is, with 3=&2 the longitudinal part vanishes, as follows from
Eq. (28) in ref. 17. Then one has (with the direct correlation function
c � �) �� 1= 1

3 (�� 2K+2�� DK)=0, while the transverse part becomes �� 2=
1
3 (�� 2K&�� DK)=(4?�3) k2�(k2&|2).

Inserting (11) into (10) we obtain

MK=
(4?)2

3
k2

k2&|2

k$2

k$2&|2 [(k� k� $)2+1]

=
(4?)2

3
k2k$2

k2&k$2 _ 1
k$2&|2&

1
k2&|2& [(k� k� $)2+1] (14)

Now the summation in (9) can be considered, and by restricting ourselves
to frequency independent polarizability :K=: we can easily perform the
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sum since (14) is of the standard form for simple harmonic oscillators.(16)

We have (K=2?n�;)

:
K

(�|0)2

(�|0)2+K 2=
1
2

;�|0

cosh( 1
2 ;�|0)

sinh( 1
2 ;�|0)

ww�
; � � 1

2
;�|0 (15)

With :K=:, use of (15), and (14) inserted for MK , we now easily find at
T=0 (K=&i�c|, �|0 � �ck, and �ck$)

:
K

MK=
(4?)2

3
1

k2&k$2

1
2

;�c(k$k2&kk$2)[(k� k� $)2+1]

=;�c
(4?)2

6
kk$

k+k$
[(k� k� $)2+1] (16)

When inserting this into (9), and further inserting into (6), we see that the
result will diverge due to the small r (or large k) behaviour. This divergence
can be avoided by introducing a large wave number cutoff, as Barton
did.(15) Thus we incorporate a factor exp(&*k) in the interaction terms
(11), which implies a factor exp(&*(k+k$)) in (16). Regarding the
electromagnetic field as a set of harmonic oscillators that mediate the inter-
action between the particles, the effect of this cutoff is to remove the high
frequency oscillators. With (16) and (9) inserted into (6) we then obtain

2=&
#2

2(16?3)2 | dr1 dr2 | dk dk$ kk$ei(k+k$) r e&*(k+k$)

k+k$
[(k� k� $)2+1]

(17)

where # is given by (13).
With 2=#2 22 this is precisely the result obtained by Barton(15) applying

quantum mechanical perturbation theory to the dielectric continuum. That
is, we have recovered the second order contribution which in the case of a
scalar field is given by Eq. (4.2) in ref. 15 where the equality

exp(&*(k+k$))
k+k$

=|
�

*
d! exp(&!(k+k$)) (18)

has been used. When dealing with the electromagnetic field, as we do here,
the result in ref. 15 is modified with the factor [(k� k� $)2+1] as given by
Eq. (B.2) in ref. 15. With this, it is seen that our results are identical
with those of Barton. Thus, further considerations based upon this basic
agreement will necessarily be the same, and will not be repeated here.
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4. FURTHER REMARKS

Let us make a few remarks on the resulting free energy (or internal
energy at T=0) for a spherical body of radius a where a positive cutoff
independent term going like 1�a shows up also within the field theoretical
approach. This is commonly interpreted as equivalent to a repulsive
Casimir surface force. From our approach it is now obvious that this term
reflects the large r-behaviour of the free energy (5) of particle pairs. For a
finite system such as a sphere the resulting free energy will in general be
larger than its bulk value since there is no material outside with which it
can interact. This missing interation first of all manifests itself in a positive
term that reflects the surface tension and is proportional to the surface
area. This term is present in the final result given in the Abstract in ref. 15.
In additon, there is the 1�a term which can be associated with the 1�r7-tail
in connection with the missing material away from the surface.

As another point, let us note that in ref. 15 there is an additional lead-
ing term due to first order perturbation theory. This term is not present in
our derivation above. However it can be identified in a straightforward
manner from the earlier work of Ho% ye and Stell.(17) It represents a self-
energy of the electromagnetic field attached to the polarizable particles. As
such it is just part of the properties of isolated single particles, and should
accordingly not be included in the free energy density above. In fact, it is
part of the radiation reaction of accelerated charges and is incorporated in
the resulting physical momentum. Unfortunately this momentum correc-
tion for a classical particle is infinite, so the ``bare'' mass of particles is
negative resulting in the well known ``runaway'' problem in classical
electromagnetism.(22) This also reflects itself in the refractive index problem
considered in ref. 17. Further, Ho% ye and Lomba made numerical calcula-
tions to obtain a minor non-causal tail in the dielectric response of the fluid
(i.e., a minor response will appear before an electric field is applied to avoid
exponential growth or runaway for increasing time).(23)

With cutoff in wave vectors the above mass correction can be made
finite. The term of interest is then the component �� 2K(k) of Eq. (8).
Including the shielding factor in (11) we then have (with 2+3=0 as
above)

�� 2K(k)=
4?
3

2k2

k2&|2 e&*k (19)

As shown by Eqs. (12)�(15) of ref. 17, this gives rise to a self-interaction
(for given K, s � aK)

2,(aK)=& 1
2a2

K �2K(0) (20)

230 Ho% ye and Brevik



where the minus sign is due to the definition used. The total internal energy
contribution that follows from this is

21=:
K

\V(2,(aK))=& 1
2 \V :

K

(a2
K) �2K(0) (21)

where \V is the number of particles in a volume V.
Now (a2

K) =3:k �;; cf. ref. 19. So with :K=: we obtain by first using
(15) for ; � �

:
K

�� 2K(k)=
4?
3

;�cke&*k

or

:
K

�2K(0)=
4?
3

;�c
(2?)3 | ke&*k dk=

4
?

;�c
*4 (22)

which together with (13) and (21) yield

21=&
1
2

\V
3:
;

4
?

;�c
*4 =&#

3
2?2

�c
*4 V (23)

This is precisely the first order contribution obtained by Barton.(15) As
mentioned above, this energy is a quantity that is part of the free particles
themselves, and can thus not be separated out. So the free energy of the
interacting system of polarizable particles will not include this term.

After the above was written, we have become aware that the recent
paper of Bordag, Kirsten, and Vassilevich(24) arrives at results closely
related to those obtained by Barton.(15) The authors of ref. 24 make use of
field theoretical path integral methods which are in themselves quite
different from those used in ref. 15 as well as in the present paper, but the
expression for the Casimir energy obtained in Section IV in ref. 24
nevertheless parallels that obtained in ref. 15. (There are some differences in
numerical coefficients of the divergent terms, due to different regularization
methods employed.) We thank the authors of ref. 24 for making us aware
of this correspondence.
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